

Range Trees

IOI Training Camp 2
2006

Keegan C-Smith

Overview

● Not called a range tree.
● Range trees can tell you how many of an item

you in O (log n)
● Insertions in avg case: O (log n)
● Insertions can be ranges or single number.
● All ranges must be Integer ranges.

How it works

● Complete binary tree.
● Root encompasses

entire range.
● Each node will cover

a range [A,B].
– Left child will have

range [A,(A+B)/2].
– Right child will have

range ((A+B)/2,B].
– If A == B, a node has

no children.

A -> B

A -> BA -> B

A -> B

(A+B)/2 + 1 -> BA -> (A+B)/2

5 -> 10

8 -> 105 -> 7

How it works cont.

●Because ranges have to be indexes, (A+B)/2
must be floored or ceil. For these slides I am
going to use floor.
●Ranges must be inclusive.

Inserting

● When passing through a node:
– If every num in range is in nodes range, increase

node's count. Do not traverse children.
– If no num in range is in left child's range, do not

traverse left child.
– If no num in range is in right child's range, do not

traverse right child.

Inserting examples

1 -> 4
0

3 -> 4
1

1 -> 1
0

2 -> 2
0

3 -> 3
2

1 -> 2
2

4 -> 4
0

Inserting 1->4

1 -> 4
1

3 -> 4
1

1 -> 1
0

2 -> 2
0

3 -> 3
2

1 -> 2
2

4 -> 4
0

Inserting 2->3

1 -> 4
1

3 -> 4
1

1 -> 1
0

2 -> 2
1

3 -> 3
3

1 -> 2
2

4 -> 4
0

Inserting 2->4

1 -> 4
1

3 -> 4
2

1 -> 1
0

2 -> 2
2

3 -> 3
3

1 -> 2
2

4 -> 4
0

Inserting 4->4

1 -> 4
1

3 -> 4
2

1 -> 1
0

2 -> 2
2

3 -> 3
3

1 -> 2
2

4 -> 4
1

Reading

● To find out how many of item C you have you
traverse as if inserting range C->C.

● Each node you pass through, you increment a
count.

Reading of 4

1 -> 4
1

3 -> 4
2

1 -> 1
0

2 -> 2
2

3 -> 3
3

1 -> 2
2

4 -> 4
1

There are 1 + 2 + 1 = 4 items of item 4

Implementation in an Array

● Can be implemented in an array if using
indexing from 1.
– Left tree index = current index * 2
– Right tree index = current index * 2 + 1

● Size of array: ∑
i=0

ceil  log2n

2i

Array Indexes

1

3

4 5 6

2

7

